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Abstract-When a heated solid sphere is introduced into an ambient fluid, a natural convective flow occurs 
which results in a drag force on the sphere. For l&250 pm diameter particles, the drag force may be as 
great as the particle weight. This study involves the experimental measurement and the numerical calculation 
of both the steady-state and the transient natural convective drag force around spheres at low Grashof 
numbers. The experimental measurements were performed in an electrodynamic balance for Grashof 
numbers ranging from 0.002 to 0.03. Numerical solutions, based on techniques used by Geoola and Comish 
(Int. J. Heat Mass Transfer 24, 1369-1379 (1981) ; 25, 1677-1687 (1982)), are computed for Grashof 
numbers ranging from 0.0004 to 0.5. Comparison of the experimental results to the numerical results show 

good agreement. 

INTRODUCTION 

THE ELE~~OD~AMIC balance is a device capable of 
suspending a single, charged l-250 pm particle in 
an ambient gaseous environment and is now being 
developed as a tool for studying single particle high 
temperature gas-solid reactions. A vertical force bal- 
ance on an unheated suspended particle reveals that 

mg = qE (1) 

where m is the particle mass, g the gravitational accel- 
eration, q the number of excess charges on the sus- 
pended particle, and E the electric fieid strength in the 
vertical direction. If no other forces are acting on 
the particle, changes in particle mass can be followed 
continuously by monitoring the electric field strength 
required for particle balancing. Upon laser heating of 
the suspended particle, however, the fluid near the 
particle surface is heated due to conduction. Since the 
ambient fluid is cool, the fluid near the particle surface 
rises, and a natural convective flow field is set up 
which introduces a natural convective drag force, F,,,, 
on the particle. The vertical force balance now 
becomes 

mg = qE+F,,,. (2) 
This upward drag force on the particle complicates 
interpretation of the particle weight change data. 
Arnold and Lewittes [3] were the first to report such 
a force. Later, Spjut [4] reported drag force mag- 
nitudes as great as the particle mass. In order to deter- 
mine particle reaction rate, changes in particle mass 
must be distinguished from changes in drag force. 
Therefore, characterization of the natural convective 
drag force is necessary if the electrodynamic balance is 
to be used for continuous mass vs time measurements. 
Due to the small size of the particles being examined 
in the electrodynamic balance, the corresponding 
Grashof number will also be small, with the range of 
interest being between 0.0005 and 1.0. The Reynolds 
number is much less than one. 

Experimental studies of natural convection around 
a heated sphere at small Grashof number have been 
conducted by Meyer [S], Elenbaas [6], Ranz and Mar- 
shall [7], Mathers et al. [8], Tsubouchi and Sato [9], 
and Yuge [lo]. These authors, however, were inter- 
ested in heat transfer, and only measured the overall 
Nusselt number. No experimental measurements of 
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NOMENCLATURE 

c dimensionless chamber constant, 0.4 Vi balancing voltage of unheated particle 
C DP dimensionless pressure drag force M 

coefficient AV change in balancing voltage between 
c DF dimensionless viscous drag force unheated and heated particle M 

coefficient W general continuous function 
C 
C,” 

dimensionless total drag force coefficient representing T, G, and $ 
heat capacity of surrounding gas at Z modified dimensionless radial direction 
constant pressure per unit mass zo characteristic chamber dimension, 
[m’s~‘K~‘] 0.004 m 

E electric field strength in vertical direction Zx dimensionless outer boundary location. 
[V m-‘1 

F “at natural convective drag force [Nj 
F St&es Stokes’ drag force [N] 

Greek symbols 

9 gravitational acceleration, 9.8 1 m s-’ 
B coefficient of volume expansion [K-‘1 

G modified dimensionless vorticity 
convergence criteria 

Gr Grashof number, g/I( T, - T,)R ‘/v* 
; dimensionless vorticity component in 

k surrounding gas thermal conductivity 
the &direction 

[kgm s-‘K-‘1 
0 angular coordinate 

Ko dimensionless pressure at the front 
/J surrounding gas viscosity [kgm-' s-‘1 
V 

stagnation point 
surrounding gas kinematic viscosity 

& dimensionless pressure at the sphere 
[m’s_‘] 

surface 
P surrounding gas density [kg m-‘1 

mesh size in the z-direction 
4 coordinate representing the angle of 

“M number of mesh points in the z-direction 
rotation about the axis of symmetry 
of the flow 

n mesh size in the &direction dimensionless stream function 
N number of mesh points in the @-direction 

II/ 
o relaxation factor. 

NU overall Nusselt number 

Nue local Nusselt number 
Pr Prandtl number, C&k Subscripts 

4 total excess charge on particle [C] G vorticity 

r dimensionless radial direction i mesh point index in the z-direction 

x 
dimensional radial distance [m] j mesh point index in the e-direction 

particle radius [m] r radial direction 

t dimensionless time S surface 

i dimensional time [s] T temperature 

T dimensionless temperature W general function 

F dimensional temperature [K] Z modified radial direction 

T, particle surface temperature [K] 
;P 

ambient 

TCC ambient gas temperature [K] tangential direction 

u dimensionless velocity $ stream function. 

ii dimensional velocity [m s-‘1 
V velocity of surrounding gas [m s-l] Superscripts 
V d.c. balancing d.c. voltage across endcap L Lth iteration 

electrodes [v] L- 1 (L- 1)th iteration. 

the drag force induced on a sphere by a natural con- 
vective flow field are found in the literature. 

The classic references to analytical treatments of 
natural convection around spheres at small Grashof 
numbers are Mahony [ 111, Fendell [ 121, Hossain and 
Gebhart [ 131, and Hieber and Gebhart [14]. Each 
attempted to solve the problem by a perturbation 
method, but a suitable outer solution could not be 
obtained so as to match with the inner expansion. 
This problem can, however, be solved by a series 

truncation method [ 151 or using tinite difference 
methods to obtain solutions [ 1, 2, 16, 173. The Bous- 
sinesq approximation is used in all of the above-ref- 
erenced studies. Only Geoola and Comish [l, 21 cal- 
culate a natural convective drag force ; all previous 
studies concentrate on the heat transfer aspects of the 
problem. 

In this study experiments were performed in the 
electrodynamic balance to measure the natural con- 
vective drag force on a heated particle for Grashof 
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numbers of 0.002-0.03. These experiments were com- and a transient solution. The governing equations 
pared to both steady-state and transient finite differ- are expressed in spherical polar coordinates (f&(g). 
ence solutions of the continuity, energy, and Navier- Radial distance, temperature, velocities, and time are 
Stokes equations. nondimensionalized in the following manner : 

DIMENSIONAL ANALYSfS 

Dimensional analysis reveals that 

r = FJR (4) 

T= (I?-T,)J(T*--T,) (5) 

u, = c,qv (6) 

lie = g/v (7) 

t = iv/P (8) 

where the tilde over a variable represents the dimen- 
sional form of the variable. The assumptions used in 
this model are that : (1) the particle is spherical ; (2) 
the particle has a uniform, constant surface tem- 
perature; (3) the particle is not rotating; (4) flow is 
~is~et~c (all the dependent variables are inde- 
pendent of +) ; (5) the only body force is gravity ; (6) 
the Boussinesq appro~mation apphes ; and (7) other 
fluid properties (such as viscosity, specific heat, and 
thermal conductivity) are constant. The Navier- 
Stokes and continuity equations were combined and 
expressed in stream function-vorticity form. The 
energy, vorticity transport, and stream function equa- 
tions are then transformed from polar coordinates 
(r, 0) to rectangular coordinates (z, 0) by means of 
the transformation 

fJ* 
Fmt = - CD, 

P 

where F,,,, is the natural convective drag force (N), p 
the surrounding gas viscosity (kg m-’ s-l), p the 
surrounding gas density (kg m-‘), and C,, the dimen- 
sionless drag force coefficient. 

The dimensionless drag force coefficient is some 
unknown function of the Grashof number, Gr, and 
the Prandtl number, Pr, which are defined as fohows : 

Gr = g~(T~-T*)R3/v2 

Pr = C, p,lk 

where g is the gravitational acceleration (m s-‘), p the 
coefficient of volume expansion (K-l), T, the particle 
surface temperature (K), T, the ambient gas tem- 
perature (K), R the particle radius (m), v the gas 
kinematic viscosity (m* s-l), C, the gas heat capacity 
at constant pressure per unit mass (m2 s-’ IL-‘), and 
k the gas thermal conductivity (kg m se3 K-l). 

Note that we have used the convention of Geoola 
and Cornish to define Gr, where R is used as the 
characteristic length instead of particle diameter. All 
gas properties are evaluated at the gas tllm tempera- 
ture, T,, defined as (Ts + T,)/Z. The value of /I used 
in the definition of Gr is l/r,. The numerical results 
will be presented primarily as a function of the dimen- 
sionless drag force coefficient and Grashof number. It 
should be noted that evaluating the surrounding gas 
properties at the ambient gas temperature or the par- 
ticle surface temperature has little effect on the com- 
parison between numerical and experimental results 
for the two gases utilized in this work. With both N2 
and CO*, when the evaluation temperature of the gas 
properties are increased from the ambient tempera- 
ture to the particle surface tem~rature, the Grashof 
number decreases and the factor, p2/p, increases. 
Numerically, when the Grashof number decreases, 
the predicted C,, also decreases. Experimentally, the 
increase in the factor, p*/p, will by equation (3), cause 
C,, to decrease also. This behavior of the surrounding 
gas properties with temperature makes the choice of 
evaluation temperature less critical. 

THEORETICAL MODEL 

A numerical technique modeled after that of 
Geoola and Cornish [I, 21 is used to solve the con- 
servation equations of mass, momentum, and energy 
in two dimensions for the gas phase near the particle. 
Methods were developed to obtain both a steady-state 

r = e”. (9) 

The dimensionless energy conflation equation 
becomes 

2zaT 1 
e at+eZsin$ ( 

a$aT arl/aT --~ 
dzae aeaz > 

1 a2T aT a2T 

75 a2 ( 
-+Y&+jg+cot0jj aT (10) 

) 

where the velocity components are 

1 a+ 
u*l= --- 

e&sin@ ae 

1 a$ ug =r--’ 
e sinr? az 

The vorticity transport equation is given by 

(11) 

(12) 

ek g+&$!&-ZGcot@) 

a* ac; 
--B z--2G =e2’E2(G) 

( )I 

where G is the modified dimensionIess vorticity, 
defined as 

G = [e’sint?. (14) 
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The ‘E2’ operator is defined as 

a= a a2 
eZ”E2=Q-~+~-cot6&. (15) 

The stream function equation is written as 

e”G = e2’E2(+). (16) 

The steady-state boundary conditions are as follows. 

At the sphere surface (z = 0) : 

$=O 

G=d23r 
az2 

T= 1. 

Along the axis of symmetry (6’ = 0 or n) 

t//=0 

G=O 

aT 
-g = 0. 

At the outer boundary (z = z,) : 

$ = smooth 

G = smooth 

T= 0. 

The dependent variable is made smooth at the outer 
boundary by approximating its value using a first- 
order polynomial in z and specific values at the two 
adjacent nodes. The time-dependent terms were 
included in the energy and the vorticity transport 
equations for the transient solution. The initial con- 
ditions (t = 0) for the transient case are as follows : 

$=Oforallzand@ 

G=Oforallzand@ 

T= latz=O 

T = 0 for all other z. 

Upon solution of the steady-state stream function, 
vorticity, and temperature, other quantities are cal- 
culated as follows [ 1, 21. 

Local Nusselt number at the sphere surface : 

Nue = -2aT 
az z=o’ (17) 

Average or overall Nusselt number : 

s 

II 
Nu = f Nue sin 0 de. (18) 

0 

Dimensionless pressure at the front stagnation 
point : 

+ 2Gr s ‘, Te”dz. (19) 
0 

Dimensionless pressure at the sphere surface (sur- 
face pressure) : 

KB = Ko+2Gr(l-cos8)+2 
0 a4 

.I( > 
o z i-4 d@. (20) 

Dimensionless pressure drag (form drag) : 

CD, = 
i 

n KB sin 28 de. (21) 
0 

Dimensionless viscous drag (frictional drag) : 

(22) 

Dimensionless total drag : 

c DT = CDp+CDF. (23) 

The integrands in equations (19) and (20) are evalu- 
ated at 0 = 0 and z = 0, respectively. 

NUMERICAL METHOD 

Finite differencing was used to solve equations (lo), 
(13), and (16). Central differences were used to 
approximate the first-order derivatives of tempera- 
ture, vorticity, and the stream function, except in the 
convective terms of the energy and vorticity equations 
where an upwind differencing method was used for 
stability purposes. The upwind or upstream dif- 
ferencing method utitis backward differencing when 
the velocity of the fluid is positive and forward dif- 
ferencing when the velocity of the fluid is negative. 
Therefore, the one-sided difference is always on the 
upwind side of the node point. In the steady-state 
case, the energy, vorticity, and stream function equa- 
tions were solved sim~taneously using an extrapo- 
lated Gauss-Seidel method [ 181. The Gauss-Seidel 
method updates the coefficients point by point using 
the following relationship : 

wj;“’ = wg- ‘1 +qJ pq) - wg- 1’) (24) 

where W represents either tem~rature, vorticity, or 
the stream function, o, is a relaxation parameter used 
to accelerate the rate of convergence, and L is the 
iteration number. The convergence criteria used was 

for all three dependent variables: r, G, and $. For 
all the steady-state computations, &r = 0.00001, 
sG = 0.001, E* = 0.0001, wr= 1.5, oc = 1.2, and 
we = 1.3. In the transient computations, the energy 
and vorticity transport equations were solved using 
Peaceman and Rachford’s AD1 method f19]. The 
stream function equation was solved at each time step 
using an extrapolated Gauss-Seidel method. In both 
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the steady and transient cases derivative boundary 
conditions along the axis of symmetry were approxi- 
mated by third-order polynomials and the derivative 
boundary conditions at the particle surface were 
approximated by fifth-order polynomials. The bound- 
ary conditions at the outer boundary were approxi- 
mated by first-order polynomials. 

The typical number of mesh points used in the 
calculations was M = 100 and N = 3 1, where M is the 
number of nodes in the r-direction and N the number 
of nodes in the @-direction. Typical values of m and n, 
mesh spacings in the z- and @-directions, respectively, 
were 0.04 and 0.1047. 

DISCUSSION OF NUMERICAL RESULTS 

Both the steady-state and transient solutions were 
solved with the same boundary conditions as Geoola 
and Comish [l, 21 except at the outer boundary. 
Instead of forcing the vorticity and the stream func- 
tion to zero at the outer boundary, these dependent 
variables were approximated by linear pol~omial 
extrapolations in the z-direction using the values of 
the vorticity and the stream function at the two pre- 
ceding nodes. For example, for the case of vorticity 

G(z,,j) = 2G(z, - l&--G@, -2J). (26) 

When the vorticity and the stream function are forced 
to zero, no mass is allowed to leave through the outer 
boundary. Therefore, a recirculation pattern is set up. 
When the vorticity and stream function at the outer 
boundary are not set to zero and are approximated 
using adjacent values, mass is permitted to cross the 
outer boundary, and no recirculation pattern is set 
up. Gas flows into the bottom of the outer sphere and 
out of the top. The overall drag coefficient was found 
to be independent of the type of outer boundary con- 
dition used as long as the outer boundary tended 
toward infinity. The drag coefficient was found to be 
very sensitive to grid size in the radial direction until 
some critical grid size was obtained, however. Figure 
1 is a plot of the computed steady-state drag coefficient 
(CD,) for Gr = 0.05 vs location of the outer boundary 
for the two types of outer boundary conditions exam- 
ined. The value of the critical grid size was a function 
of the outer boundary condition used. If the outer 
boundary condition approxima~s the vorticity and 
stream function using adjacent values, the critical grid 
size is 50 times the radius of the particle. If Geoola 
and Comish’s boundary conditions are used, the criti- 
cal grid size is at least 120 times the radius of the 
particle. The former type of outer boundary condition 
is preferred because it is physically more realistic and 
because of the savings in computer storage and com- 
putational time. Therefore, the boundary condition 
allowing mass flow through the outer boundary is 
utilized for all of the cases examined in this paper. 
The grid size used by Geoola and Comish [ 1, 21 was 
below the critical grid size ; they had an outer bound- 
ary at 24.5 radii away from the particle surface and 

0 100 200 

RADII AWAY FROM PARTICLE 

FIG. 1. Computed steady-state drag force coefficient for 
Gr = 0.05 and Pr = 0.72 vs location of the outer boundary 

with type of outer boundary condition as a parameter. 

reported a drag coefficient of 1.17. If the outer bound- 
ary is placed farther away from the particle, past the 
critical grid size of 120 times the radius of the particle, 
a dimensionless drag force coefficient of 4.33 would 
have been calculated. 

Figure 2 is a plot of the steady-state dimensionless 
pressure, viscous, and total drag coefficients, as well 
as Nusselt number vs Grashof number. The ratio of 
the dimensionless viscous drag over the dimensionless 
pressure drag remains constant at a value of 2.0 over 
the range of Grashof numbers examined. This implies 
that there is no change in the basic flow patterns, such 
as the separation of the boundary layer. The Nusselt 
number asymptotically approaches 2.0 as Grashof 
number goes to zero. 

The steady-state drag force eoefficient%vas found to 
have a weak negative dependence on Prandtl number. 
For the gases and t~~rature range examined exper- 
imentally, the Prandtl number would have a 
maximum of 0.78 and a minimum of 0.69. This cor- 
responds to only a 3.5% difference in the dimen- 
sionless drag force coefficient. Therefore, for the pur- 
poses of this paper, the dimensionless drag force 
coefficient will be assumed to only be a function of 
the Grashof number. 

Figure 3 is a plot of the total drag force coefficient 

r 2.6 

FIG. 2. Steady-state dimensionless pressure, viscous, and 
total drag force coefficients and Nusselt number vs Grashof 

number for Pr = 0.72. 
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DIMEXSIONLESS TIME 

FIG. 3. Total drag force coefficient and Nusselt number vs 
dimensionless time for Gr = 0.05 and Pr = 0.72. 

and Nusselt number vs dimensionless time for Gr = 
0.05 and Pr = 0.72. The transient drag coefficient 
is within 10% of steady state at a dimensionless 
time of 280. The Nusselt number is within 10% 
of steady state at a dimensionless time of 15. The 
Nusselt number reaches steady state in less than l/l0 
of the time it takes the drag force coefficient to reach 
steady state. This indicates that the temperature pro- 
file is set up one order of magnitude faster than the 
flow field. 

Figure 4 is a log-log plot of the dimensionless time 
required to reach 90% of the steady-state total drag 
force coefficient vs Grashof number. As Grashof num- 
ber increases, the dimensionless time decreases. 

Figure 5 is a plot of the steady-state dimensionless 
tangential velocity at 0 = 90” vs radial distance from 
the particle for Grashof numbers of 0.5, 0.05, and 
0.005. Su~~mposed on this plot is the dimensio~ess 
temperature profile, which is essentially the same for 
these three Grashof numbers. The outer boundary 
used in this case was 52 radii away from the sphere 
center but the variables of interest are only shown out 
to 20 radii away from the sphere to give more spatial 
resolution near the sphere’s surface. The maximum 
dimensionless velocity increases with increasing Gr. 
Also, the radial distance at which the maximum 

GRASHOF NUMBER 

FIG. 4. Dimensionless time required to reach 90% of the 
steady-state total drag force coefficient vs Grashof number 

for Pr = 0.72. 
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FIG. 5. Steady-state tangential velocity at B = 90” and dirnen- 
sioniess temperature vs radial distance from the particle for 

Gr = 0.005,0.05, and 0.5. 

dimensionless velocity occurs moves closer to the 
particle surface with increasing Gr. 

A more complete description of the numerical 
method and the results are presented by Dudek and 
Fletcher [ZO]. 

EXPERIMENTAL APPARATUS 

Experiments were performed in an electrodynamic 
balance to measure the natural convective drag force 
on spherical, inert particles. The theory of the balance 
is described by Wuerker et ai. [21], Davis and Ray [22], 
and Spjut [4]. The electrodynamic balance, shown 
schematically in Fig. 6, is capable of suspending a 
single, charged, l-250 pm diameter particle in a 
dynamic electric field. The bala&e itself consists of 
three electrodes separated by Teflon insulation. The 
a.c. ring electrode, which is attached to an a.c. voltage 
with a peak-to-peak voltage of 5000 V at ‘100 Hz, 
gives the particle lateral stability. The top and bottom 
endcap electrodes provide a vertical d.c. field that can 
be adjusted to counteract the gravitational force on 
the particle. If the top electrode is connected to a 
positive d.c. voltage and the bottom electrode is con- 
nected to a negative d.c. voltage, then a negatively 
charged particle can be suspended. The particle may 
be raised or lowered in the balance by varying the d.c. 
voltage across the top and bottom electrodes. When 
the particle is balanced in the center of the chamber, 
the d.c. voltage across the electrodes is proportional 
to the particle mass divided by the excess particle 
charge. Optical access to the suspended particle is 
through the four holes in the ring electrode, the holes 
in the top and bottom electrodes, or the holes along 
the asymptotes between the electrodes. 

The suspended particle is ifluminated by either a 
5 mW HeNe laser or a quartz halogen lamp, and can 
be observed with an optical microscope (70 x). The 
particle diameter can be measured to within +3 pm 
using a graticule located in the eyepiece of the micro- 
scone. Some of the scattered He-Ne light from the 
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DETECTORS 

He Ne 

GA!3 (N, , CO, , air) LASER 
FIG. 6. Exploded view of the electrodynamic balance. 

particle can also be collected and sent to an electro- 
optical position control system which automatically 
adjusts the d.c. voltage required for particle balancing. 

The suspended particle is heated from two sides by 
a 20 W carbon dioxide laser with a nominal wave- 
length of 10.6 pm, and particle temperature is mea- 
sured via two color (2 and 4 pm) infrared pyrometry. 
The particle’s environment may be altered by intro- 
ducing various gases into the chamber through the 
bottom electrode. The experimental apparatus used 
in these experiments is described fully by Spjut [4]. 

MASS MEASUREMENT BY THE 

AERODYNAMIC DRAG FORCE TECHNIQUE 

Various techniques have been used for sizing of 
particles suspended in an electrodynamic balance [22- 
24] and electron stepping [25, 261 has been used for 
absolute mass and charge measurement. The electron 
stepping method involves measuring the change in 
balancing voltage associated with the removal of a 
single electron from the particle surface. Unfor- 
tunately, this method can only be used on particles 
less than 20 pm in diameter due to the large number 
of excess charges (> 1 million) required to balance 
a larger particle. Larger spherical particles may be 
weighed by an aerodynamic drag force technique [23]. 
This technique involves measuring the aerodynamic 
drag force on the particle as a function of the flow 
rate of gas through the chamber and using Stokes’ 
law to back out the particle mass. By performing a 
vertical force balance on the particle 

mg = @ + Fstolte, (27) 

where m is the particle mass (kg), g the gravitational 
acceleration = 9.81 m sA2, q the total excess charge 
(C), Ethe electric field strength in the vertical direction 

(V cm-‘), and Fstokcs the Stokes’ drag force (N), or 
since 

E = Vcic. Wo (28) 

and 

F Stokes = bnRpv (29) 

where V,,. is the balancing d.c. voltage across endcap 
electrodes (V), C the chamber constant = 0.4 (dimen- 
sionless), z0 the characteristic chamber dimension 
= 0.004 m, R the particle radius (m), p the sur- 
rounding gas viscosity (kg s-’ m-l), and v the velocity 
of the surrounding gas (m s-l). 

Since the only unknowns are m and q, if V,,,, is 
measured for two gas velocities, both m and q may be 
determined. A typical weighing involves measuring 
the balancing d.c. voltage at seven different gas 
velocities. The aerodynamic drag force technique of 
weighing requires approximately 10 min when per- 
formed as described above, and has successfully 
measured particle masses as small as 1.0 x 10m6 g. 

EXPERIMENTAL PARAMETERS AND 

PROCEDURES 

A synthetic char with a trade name ‘Spherocarb’ 
manufactured by Foxboro/Analabs was used for all 
the drag force measurements. ‘Spherocarb’ particles 
were used for several reasons. First, they are very 
spherical. This enables them to be weighed by the 
aerodynamic drag force method. ‘Spherocarb’ spher- 
icity also promotes more uniform particle heating 
which helps minimize thermophoretic forces (forces 
induced on the particle due to temperature gradients 
on the surface). Secondly, the ‘Spherocarb’ particles 
are approximately black at the wavelengths of inter- 
est. Thirdly, the available size range of ‘Spherocarb 
particles (125-250 pm) allows particle diameter 
measurements to be made optically using a micro- 
scope. Also, the large size increases the magnitude of 
the 2.0 and 4.0 pm signals reaching the pyrometers, 
allowing for more accurate temperature measure- 
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ment. Finally, the large size helps to reduce the relative 
magnitude of the thermophoretic forces exerted on 
the particle. 

Experiments were performed varying three par- 
ameters : particle diameter, particle temperature, and 
surrounding gas. Particle diameter was varied between 
127 and 236 pm. Particle temperature ranged from 
600 to 1200 K. Two surrounding gases were used, 
nitrogen and carbon dioxide. 

An experiment is initiated by injecting ‘Spherocarb’ 
particles into the electrodynamic balance using a syr- 
inge. After adjusting the a.c. and d.c. fields to elim- 
inate all but a single ‘Spherocarb’ particle, nitrogen is 
purged through the chamber at 20 ml min-’ for 20 
min. The diameter of the particle is measured to f 3 
pm with the microscope and a graticule. The particle 
is then weighed two times using the aerodynamic drag 
force technique. If the two weights deviate by more 
than 5%, a third weighing is performed or the particle 
is discarded and a new particle captured. Once the 
particle has been weighed, the nitrogen atmosphere in 
the chamber is maintained using a steady flow of 5 ml 
min-’ of nitrogen. The carbon dioxide laser is then 
turned on and warmed up for approximately 20 min 
in order to reduce fluctuations in the power to 
approximately & 15%. After the carbon dioxide laser 
is warmed up, the balancing voltage is recorded to 
within + 0.1 V and the laser heating of the particle 
initiated. The d.c. balancing voltage is adjusted to 
balance the natural convective drag force and rec- 
orded to within +0.5 V along with the 2 and 4 pm 
detector signals used for particle temperature mea- 
surement. Particle temperatures could be measured 
to within +20 K. 

Typical changes in balancing voltage and particle 
temperature for a ‘Spherocarb’ particle undergoing a 
heating/cooling cycle are shown in Fig. 7. At time 
zero, the particle is balanced in the chamber and is at 
ambient temperature. Laser heating begins at 0.28 s 
and ends at 1.94 s. After the particle is heated to above 
600 K, the natural convective drag force develops and 
the voltage required for balancing decreases. 

A force balance on the heated particle reveals that 

A VI I’, = F,,, Ims (30) 

where A V is the change in balancing voltage between 
an unheated and a heated particle (V), Vi the bal- 
ancing voltage of an unheated particle (V), Fnat the 
natural convective drag force (N), and mg the particle 
weight (N). 

When heating is discontinued, the balancing voltage 
should equal the initial balancing voltage. This serves 
as a check that the particle charge to mass ratio did 
not change during the experiment. This process is 
repeated 5-l 5 times with varying carbon dioxide laser 
powers ; i.e. varying particle temperatures. The par- 
ticle is also periodically reweighed to provide a check 
that the particle mass did not change. Carbon dioxide 
is then purged through the chamber and the process 
is repeated. 
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TIME (set) 

300 1 1 
0 1 2 
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FIG. 7. Change in balancing voltage and temperature vs time 
for a ‘Spherocarb’ particle heated to 610 K. 

COMPARISON OF EXPERIMENTAL AND 

NUMERICAL RESULTS 

Five different ‘Spherocarb’ particles with diameters 
of 127, 153, 168, 192, and 236 pm were examined 
experimentally. The steady-state drag force coefficient 
vs Grashof number is plotted in Fig. 8. The triangles 
represent experiments performed in nitrogen, the 
circles represent experiments performed in carbon 
dioxide, and the solid line represents the numerical 
solution. The surrounding gas properties are evalu- 
ated at the film temperature which is defined as the 
arithmetic mean between the particle surface tem- 
perature and the ambient gas temperature. The 
numerical solution agrees well with the experimental 
results, even though the Boussinesq criterion has been 

10-a 10-o 10-l 
GRASHOF NUMBER 

FIG. 8. Experimental and numerical steady-state drag force 
coefficients vs Grashof number. 
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FIG. 9. Experimental measurements and numerical cal- 
culations of the natural convective drag force/particle weight 
vs particle temperature for a ‘Spherocarb’ particle with a 

radius of 96 pm. 

violated due to the large temperature differences in 
the problem [27]. 

Figure 9 is a plot of steady-state natural convective 
drag force divided by particle weight vs particle tem- 
perature. This particular run was performed in two 
different surrounding gases (nitrogen and carbon 
dioxide) on a ‘Spherocarb’ particle with a radius of 
96 pm. Again, the triangles represent experiments per- 
formed in nitrogen, the circles represent experiments 
performed in carbon dioxide, the top solid line rep- 
resents the carbon dioxide numerical solution, and the 
bottom solid line represents the nitrogen numerical 
solution. At room temperature, the drag force is equal 
to zero. 

Figure 10 is a plot of the change in balancing voltage 
vs real time for a 183 pm diameter ‘Spherocarb’ par- 
ticle heated to 610 K in nitrogen. The initial, unheated 
voltage was 100 V. The small points represent exper- 
imental results and the smooth solid line represents 
the transient numerical solution. The experimental 
points were smoothed with a moving average filter. 
Again we see good agreement between experiment 
and theory. According to the heat transfer model 
developed by Spjut [4], the particle should reach 90% 
of its equilibrium temperature in 70-80 ms. 
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FIG. 10. Experimental and numerical changes in balancing 
voltage vs time for a 183 pm diameter ‘Spherocarb’ particle 

heated to 610 K in nitrogen. 

PRACTICAL IMPLICATIONS 

Since the steady-state program takes approximately 
5-15 min on a VAX 8600, it is desirable to approxi- 
mate the numerical solution, shown graphically in 
Fig. 2, by a correlation. A discrete least squares 
method [28] was used to obtain the following second- 
order polynomial which describes the steady-state 
dimensionless total drag force coefficient : 

log (CD,) = 1.25+0.3l[log (Gr)] -O.O97[log (Gr)]‘. 

(31) 

This correlation is good to within 5% over the range 
0.004 < Gr < 0.5 for Pr = 0.72. 

The transient program takes approximately 5-24 h 
on a VAX 8600. The same discrete least squares 
method was used to obtain the following second-order 
polynomial that approximates the dimensionless time 
required to reach 90% of the steady-state drag force 
coefficient 

log(t,,%) = 1.32-log(Gr)-0.11@og(Gr)]z. (32) 

Figure 11 is a plot of the numerical solution of the 
steady-state natural convective drag force for a heated 
sphere in ambient nitrogen divided by the particle 
weight vs particle radius for a particle density of 500 
kg me3 and three different particle surface tem- 
peratures, 1500,900, and 500 K. The circles represent 
predictions of the drag force/weight using the numeri- 
cal solution and the solid lines are ‘best fit’ lines 
through these points. The numerical solution predicts 
a peak in drag force divided by weight for a particle 
radius of approximately 40 pm. The numerical solu- 
tion predicts that the natural convective drag force 
around aerosol particles less than 10 pm in diameter 
with a density greater than 500 kg mW3 will be less 
than 5% of the particle weight if particle temperatures 
are kept under 1500 K. Furthermore, since the drag 
force divided by weight is inversely proportional to 
particle density, heavy particles with densities greater 
than 2500 kg rnd3 will also not experience drag forces 
greater than 5% of their weights if particle tem- 
peratures are kept under 1500 K. 

o’3r---l 
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0 100 200 

PARTICLE RADIUS (MICRONS) 
FIG. 11. Steady-state natural convective drag force predicted 
by the numerical solution divided by the particle weight vs 
particle radius for a particle density of 500 kg mm3 and three 
different particle surface temperatures, 1500,900, and 500 K. 
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FIG. 12. Numerical predictions of real time required to reach 
90% of the steady-state drag force coefficient vs particle 
temperature for three different particle radii of 40, 80, and 

120 pm. 

Figure 12 is a prediction based on the transient 
numerical results of the real time required to reach 
90% of the steady-state drag coefficient in nitrogen vs 
particle temperature for three different particle radii 
of 40,80, and 120 ,um. The time required to set up the 
natural convective flow field decreases with increasing 
particle temperature and decreases with decreasing 
particle radius. 

For slow reactions, when the time required to set 
up the natural convective flow field is much less than 
the time required for chemical reaction, the steady- 
state solution can be used to describe the natural 
convective drag throughout the reaction. This allows 
the use of the electrodynamic balance to follow mass 
in a continuous fashion. For fast reactions, when the 
time required to set up the natural convective flow 
field is slightly less than the time required for chemical 
reaction, the transient solution can be used to predict 
the natural convective drag throughout the reaction. 
For very fast reactions, when the time required to set 
up the natural convective flow field is longer than 
the time required for chemical reaction, the transient 
solution cannot be used to predict the natural con- 
vective drag, therefore, discrete mass vs time points 
will still be necessary. 

CONCLUSIONS 

The computational method of Geoola and Cornish 
[ 1,2] for describing the heat transfer and fluid mech- 
anics surrounding a heated solid sphere was modified 
to correctly calculate the drag force due to natural 
convection. The computer calculations were used to 
develop a correlation to approximate this drag force. 
An expression was also developed to approximate the 
time required to reach 90% of the steady-state drag 
coefficient. 

The experimental steady-state and transient results 
of the natural convective drag force agree well with 
the Boussinesq numerical solutions, indicating that 
the Boussinesq approximation is valid over the exper- 
imental parameter range examined. 

The numerical solution predicts that the steady- 
state natural convective drag force relative to the par- 
ticle weight should increase with particle radius up to 
a maximum value at a particle radius of approxi- 
mately 40 pm and then start to decrease. Therefore, 
the natural convective drag force around aerosol par- 
ticles, heated to under 1500 K, with radii less than 5 
pm and density greater than 500 kg m-3 should be 
less than 5% of the particle weight. 

The steady-state natural convective drag force rela- 
tive to particle weight is inversely proportional to 
particle density. Therefore, if a particle is to be heated 
to a temperature under 1500 K and has a density 
greater than 2500 kg mP3, its natural convective drag 
force should be less than 5% of the particle weight. 

The time required to set up the natural convective 
flow field decreases with increasing particle tem- 
perature and decreases with decreasing particle radius. 
The time was in the range of lOS300 ms for the 
experiments performed. This relatively ‘slow’ natural 
convective drag force may prevent continuous mass 
vs time measurements in the electrodynamic balance 
for certain fast reactions. 
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FORCES DE TRAINEE INDUITES PAR CONVECTION NATURELLE SUR DES 
SPHERES AUX FAIBLES NOMBRES DE GRASHOF: COMPARAISON DE LA 

THEORIE ET DE L’EXPERIENCE 

Ream&--Quand une sphere solide chaude est introduite dans un fluide ambiant, se produit un ecoulement 
de convection naturelle et il en rbsulte une force de trainee sur la sphere. Pour des particules de diametre 
10250 pm, la force de trainee peut %tre aussi grande que le poids de la particule. Cette etude couvre les 
mesures experimentales et le calcul numerique pour les regimes permanent et variable de convection 
naturelle aux faibles nombres de Grashof. Les mesures de trainee sont faites a l’aide dune balance 
ilectrodynamique pour des nombres de Grashof allant de 0,002 a 0,03. Les solutions numeriques, ba&s 
sur des techniques de Geoola et Cornish (Int. J. Heat Mass Transfer 24, 1369-1379 (1981) ; 25,1677-1687 
(1982)), sont obtenues pour des nombres de Grashof allant de 0,0004 a 0,5. La comparaison des resultats 

numeriques et experimentaux est satisfaisante. 

WIRKUNG EINER AUFTRIEBSSTRGMUNG AUF KUGELN BE1 KLEINER 
GRASHOF-ZAHL: VERGLEICH VON THEORIE UND EXPERIMENT 

Zusanunenfassung-Wenn ein kugelfijrmiger erwlrmter Festkiirper in eine Fliissigkeit getaucht wird, wirkt 
durch die sich einstellende nattirliche Konvektionsstromung eine Schleppkraft auf ihn. Fiir Teilchen- 
durchmesser von 10250 pm ist die Schleppkraft von gleicher GriiBenordnung wie das Gewicht des 
Teilchens. Die Untersuchung umfaI3t die Messung und die numerische Berechnung der SchIeppkraft durch 
natiirliche Konvektion (stationar und transient) urn Kugeln bei kleiner Grashof-Zahl. Die Messungen 
werden in einem elektrodynamischen Gleichgewicht ftir Grashof-Zahlen von 0,002 bis 0,03 durchgeftihrt. 
Numerische Ldsungen unter Benutzung der Techniken von Geoola und Comish (Ink J. Heat Mass 
Transfer 24, 13691379 (1981); 25, 1677-1687 (1982)) werden fiir Grashof-Zahlen von 00004 bis 0,5 

angewandt. Experimentelle und numerische Ergebnisse zeigen eine gute obereinstimmung. 

CMJIbI COHPQTHBJIEHH~, BbI3BAHHbIE ECTECTBEHHOH KOHBEKHHEH HA CQEPAX 
l-IPW MAJIbIX WiCJIAX l-PACTmA: CPABHEHklE TEOPkIH H 3KClIEPHMEHTA 

AgonvrIpH pame~emm HarpeTOP TBepJlOfi c&pbt B XcHAKoCTEi no3HHKaeT eCTecTBeHHOKOHBeK- 

mn~oe TexeHHe, no3nefiCTnymnwe Ha c@epy. ,&~n wcmiu rurarwrpoM 10-250 MXM cma conpomnnemn 
MOX~T 6brrb pama necy 9acniubL Pa6oTa Bx.moPaeT 3mIepmsemsnbHoe mtmpemie H sIIc.ned 
paC’IeT CHJtbl COlIpOTHBJleHllSl B )‘CJIOBHnX CTal&HOHapHOrO H Ile~XOJJiiOrO PeXHMOB eCTeCT%HHOti KOH- 

BeKLWH BOKp)T C4&l I’IPH MUlblX ¶HCJIBx rpWO&L %2I~IiMf%fTZUIbHble HW~liilK npOBOnawCa Xl&W 

Y-OBH~ 3JleKT’pOLI.HHaMw~KO~O 6a~tanc.a ruta YHce.Jl rpacr@a B miana3one OT 0,002 no 0,03. QiCJIeH- 

Hble FUIeHHSl, nony¶emibxe C lIOMOUlbEo MCTOJIHKE, EClIOJlb3yeMO~ &ueonoti H KopHarueM (ht. J. ffeclt 
Mass Transfer 24, 1369-1379 (1981); 25, 1677-1687 (1982)), npoaenenbt nna p~cen Fpacno@a OT 0,0004 

LIO 0,s. nOJly¶eHO XOpOIlE COOTWTCTBHe p3yJlbTaTOB 3KCIl~HMeHTOB H ‘IHCneHHbIX PaC’ETOB. 


